Requirement of the tissue-restricted homeodomain transcription factor Nkx6.3 in differentiation of gastrin-producing G cells in the stomach antrum.
نویسندگان
چکیده
Many homeodomain transcription factors function in organogenesis and cell differentiation. The Nkx family illustrates these functions especially well, and the Nkx6 subfamily controls differentiation in the central nervous system and pancreas. Nkx6.3, a recent addition to this subfamily, overlaps Nkx6.1 and Nkx6.2 in expression in the hindbrain and stomach. Nkx6.3 transcripts localize in the epithelium of the most distal stomach region, the antrum and pylorus; expression in the adult intestine is lower and confined to the proximal duodenum. Nkx6.3(-)(/)(-) mice develop and grow normally, with a grossly intact stomach and duodenum. These mice show markedly reduced gastrin mRNA, many fewer gastrin-producing (G) cells in the stomach antrum, hypogastrinemia, and increased stomach luminal pH, with a corresponding increase in somatostatin mRNA levels and antral somatostatin-producing (D) cells. They express normal levels of other transcription factors required for gastric endocrine cell differentiation, Pdx1, Pax6, and Ngn3; conversely, Ngn3(-)(/)(-) mice, which also show reduced gastrin levels, express Nkx6.3 normally. These studies implicate Nkx6.3 as a selective regulator of G- and D-cell lineages, which are believed to derive from a common progenitor, and suggest that it operates in parallel with Ngn3.
منابع مشابه
Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors
Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...
متن کاملNKX6.3 controls gastric differentiation and tumorigenesis
NKX6.3 transcription factor is known to be an important regulator in gastric mucosal epithelial differentiation. The present study aimed to investigate whether NKX6.3 acts as an essential tumor suppressor in gastric carcinogenesis. Absent or reduced protein expression and decreased DNA copy number and mRNA transcript of the NKX6.3 gene were frequently observed in gastric cancers. Overexpression...
متن کاملExpression of the C-terminal flanking peptide of human progastrin in human gastroduodenal mucosa, G-cell hyperplasia and islet cell tumours producing gastrin.
Three antisera to the C-terminally extended form of gastrin or the C-terminal flanking peptide of progastrin were used in an attempt to investigate the post-translational processing of progastrin at the cellular level by light and electron microscopical immunocytochemistry. In the normal human gastric antrum, the G-cell secretory granules were found to contain both gastrin and the C-terminal pr...
متن کاملExpression of the Gastrin Gene in the Normal Human Colon
Gastrin, produced in the G-cells of the gastric antrum and regulating acid secretion in the stomach, also acts as a trophic factor in the gas trointestinal tract. Because of its possible role in colon cell proliferation and differentiation, evidence for its presence in normal colorectal mucosa and adenocarcinoma was sought. Utilizing tumors and matched normal mucosa from 26 patients, mature gas...
متن کاملIn-vitro Differentiation of Human Umbilical Cord Wharton’s Jelly Mesenchymal Stem Cells to Insulin-Producing Cells
Background & Objective: Diabetes is a major chronic metabolic disease in the world. Islet transplantation is a way to treat diabetes. Unfortunately, this method is restricted due to graft rejection and lack of donor islets. Mesenchymal Stem Cells (MSCS) have the ability to differentiate into Insulin-Producing Cells (IPCs). In this study, Human Umbilical Mesenchymal Stem Cells (HUMSCS) were in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 28 10 شماره
صفحات -
تاریخ انتشار 2008